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REPTATION MOTION OF LARGE ANIMALS IN A FLUID

UDC 534.222.2V. M. Shapovalov

An asymptotic analysis of the plane problem of reptation motion of animals in a fluid is performed
in a long-wave approximation. Turbulent motion is considered. Asymptotic estimates are obtained
for the axial and shear forces, expended energy, and motion trajectory. Results of numerical analysis
are given.
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In [1, 2], the problem in question was analyzed using the principle formulated by Lavrent’ev [3]. According to
Lavrent’ev’s principle, the animal’s body is treated as an elastic rod placed in a solid channel of variable curvature.
The environment surrounding the body plays the role of the solid walls of the channel. For motion in a fluid, the
fluid plays the role of the channel walls because under rapid action for a time during which the organism moves a
considerable distance, the fluid remains nearly motionless relative to the initial position by virtue of its inertia.

Kuznetsov et al. [2] considered irrotational motion in an ideal fluid, which is equivalent to motion in a freely
moving solid channel whose mass depends on the shape. For transverse flow around a cylinder, the potential was
determined by the method of plane sections. The axial friction force was ignored since in an ideal fluid the shear
stress on the body surface is equal to zero.

Shapovalov [4] studied the laminar reptation motion of animals. The results obtained applies to the motion
of microorganisms. The present paper extends the approach of [4] to the turbulent motion of animals. This is true
for animals of large sizes, such as eel, moray, etc.

The problem of plane reptation motion of large animals in a fluid is formulated and solved in a long-wave
approximation. The energy, force, and kinematic characteristics of the motion are determined. The results of
numerical analysis are given.

1. Formulation of the Problem. We consider a developed turbulent regime that corresponds to the
quadratic resistance law.

We study the motion of animals whose body is prolate enough (eels, water snakes, etc.) to satisfy the
condition l � d (l and d are the length of the body in the prolate state and its diameter). The elastic axis passes
along the backbone. The backbone can be treated as a hinged system of rods. The number of vertebras is considered
infinite, and the elastic axis is treated as a monotonic smooth curve.

The central nervous system sends command signals to the body muscles, so that a nearly sinusoidal traveling
wave is formed. The number of muscles is considered infinite, and the command signal is a continuous monotonic
function.

The Archimedean force is ignored since the density of the animal’s body is close to the density of the
surrounding fluid. The cross section of the body is constant along its length. If the surrounding fluid is conditionally
considered motionless, the dissipation of mechanical energy is localized in a region commensurable with the cross-
sectional dimensions of the animal, i.e., in the hydrodynamic boundary layer.

The longitudinal and transverse friction forces (dP and dF , respectively) act on an elementary segment of the
body of length ds. Oblique flow around the cylinder is the case. For the longitudinal friction force, Zyabitskii [5],
using the theory of a turbulent boundary layer for the case of a motionless cylinder, obtained the expression
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Fig. 1. Diagram of reptation motion.

dP = 0.325 Re−0.7
l πdρv2

l ds (vl is the axial velocity of motion of the cylinder is obtained, Rel = vldρ/µ is the
Reynolds number, and ρ and µ are the density and viscosity of the fluid, respectively), which is in good agreement
with experimental data.

According to [6], the shear friction force is described by the expression dF = 0.5ξdρv2
n ds, where vn is

the normal velocity component of the cylinder, and ξ is the drag coefficient dependent on the Reynolds number
Ren = vndρ/µ. For developed turbulent motion, Kochin et al. [7] obtained the similar relation dF = 0.48dρv2

n ds.
Except in the critical regime, the drag coefficient depends weakly on the Reynolds number. Thus, in the range
Ren = 10–104, the values of ξ decrease monotonically from 1.3 to 1. In the critical regime (Ren = 5 · 105), we have
ξ = 0.3 [6].

During motion, the transverse and longitudinal velocity components change under a periodic law. As a first
approximation for the longitudinal and transverse components of the friction forces, we use the quadratic resistance
law corresponding to the developed turbulent regime. Quite often, the body of water animals has an elliptic cross
section, which improves its hydrodynamic properties. In this case, the friction force components differ only in
constant coefficients. Let us consider a body that has a circular cross section which is constant along the length.
The drag is ignored.

The friction force components are written as

dP = Amv2
l ds, dF = Bmv2

n ds,

where Am = 0.325 Re−0.7
l πdρ and Bm = 0.5ξdρ. The parameters Am and Bm have constant values.

During directional movement, the animal performs plane reptation motion, for example in the horizontal
plane (Fig. 1). During this motion, the elastic axis and the acting forces lie in the plane xOy. Let us introduce a
spatially stationary coordinate system (x, y, z), where x, y, and z are the coordinates of the points of the elastic line
of the body s. The vector function r(s, t), 0 � s � l (t is time) performs vector parametrization of the curve s. The
directions x, y, and z correspond to a right-hand oriented trihedron (i, j, k). We denote by l (l = rs and |l| = 1)
the tangent vector to the elastic line, n = b × l is the normal vector, and b is the binormal vector.

The animal needs to overcome not only the resistance of the environment but also the inertia force of its
own body. The density of the body is assumed to be equal to the density of the surrounding fluid ρ.

The equilibrium equations are written as

Fs = −K, Ms + m = F × l,

where M is the moment, F = (F · l) l + (F · n)n = N l + Qn is the force, K is the linear density of the external
forces, including the inertia force, m is the distributed moment of the external load, N is the longitudinal force,
and Q is the shear force; the subscripts denote the corresponding derivatives.
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The expression for the external force vector taking into account the quadratic resistance law and the inertia
force of the body (the surrounding fluid is motionless) is written as

K = Am|rt| l (rt · l) + Bm|rt|n (rt · n) − ρ(πd2/4) l (rtt · l) − ρ(πd2/4)n (rtt · n),

where |rt| =
√

x2
t + y2

t is the velocity modulus of the elastic axis of the animal. The distributed moment of
the external load m is due to the rotational moment of inertia of the cross section [8]: m = −ρJϕttb, where
J = πd4/64 is the moment of inertia of the cross section of the body (which is constant along its length).

We have the following equations in scalar form:

Ns − Qϕs = −Am

√
x2

t + y2
t (xt cosϕ + yt sinϕ) + ρ(πd2/4)(xtt cosϕ + ytt sin ϕ),

Nϕs + Qs = −Bm

√
x2

t + y2
t (−xt sin ϕ + yt cosϕ) + ρ(πd2/4)(−xtt sin ϕ + ytt cosϕ), (1.1)

Ms − ρJϕtt = −Q.

These equations are written with allowance for the relations rt · l = xt cosϕ + yt sin ϕ, rt ·n = −xt sin ϕ + yt cosϕ,
rtt = xtti + yttj, and M = Mb.

We have a system with distributed parameters. According to the last equation in (1.1), the muscles located
symmetrically about the backbone of the animal produce a moment, which is expended in overcoming the inertia
forces due to the rotation of the body cross section and in producing a shear force. In turn, the shear force
is expended in overcoming the inertia forces due to the transverse motion of the body and the hydrodynamic
resistance of the surrounding medium.

We transform to dimensionless parameters and variables using the largest value of the shear force Q

(Q0 = |maxQ|) as the force scale:

{X, Y, S} = {x, y, s}l−1, e =
Am

Bm
, n =

N

Q0
, q =

Q

Q0
, τ = t

√
Q0

Aml3
,

In =
ρπd2

4Aml
, Ω = ω

√
Aml3

Q0
, K = kl, w = W

√
Aml

Q3
0

.

Here ω is the frequency of muscle contraction, w is the expended energy, and In is the inertia parameter.
In dimensionless form, Eqs. (1.1) supplemented by geometrical relations and boundary conditions have the

form

ns − qϕs = f1, f1 = −
√

X2
τ + Y 2

τ (Xτ cosϕ + Yτ sin ϕ) + In (Xττ cosϕ + Yττ sin ϕ),

nϕs + qs = f2, f2 = −e−1
√

X2
τ + Y 2

τ (−Xτ sin ϕ + Yτ cosϕ) + In (−Xττ sin ϕ + Yττ cosϕ),

Xs = cosϕ, Ys = sin ϕ, (1.2)

τ = 0: X = X0(S), Y = Y 0(S),

τ > 0, S = 0: n = q = 0, S = 1: n = q = 0.

The functions X0 and Y 0 describe the initial configuration.
The nervous impulses transmitted to the animal’s muscles form a traveling wave, which ensures translational

motion. In Eqs. (1.2), it is necessary to specify one of the functions n, q, and ϕ a priori. For the plane traveling
wave, we use the expression

ϕ = ε sin (KS − Ωτ), (1.3)

where Ω is the dimensionless frequency of muscle contraction, ε is a dimensionless parameter (|ε| � π/2), and
K = 2πi (i = 1, 2, 3 . . .). According to the last equation, the body length is a multiple of an integer of waves, which
considerably simplifies the computational expressions.

For d = 0.05 m, v = 1 m/sec, ρ = 103 kg/m3, and µ = 10−3 Pa · sec, the inertia parameter is In = 74.86.
Therefore, it is necessary to take into account the last terms on the right side of the first two equations (1.2).

201



In Eqs. (1.2), the factors do not contain the moment of inertia of the cross section. Therefore, the inertia
forces due to the rotational inertia of the cross sections do not influence the motion trajectory of the animal’s body
and only determine the moment (1.1).

According to [4], the energy W can be defined by the integral

W =

l∫

0

rt · K ds.

In view of the relation

Ns − Qϕs = −Am|rt|(rt · l) + ρ
πd2

4
(rtt · l), Nϕs + Qs = −Bm|rt|(rt · n) + ρ

πd2

4
(rtt · n),

rt = xti + ytj

and Eqs. (1.2), the expression for the dimensionless power becomes

w =

1∫

0

{√
X2

τ + Y 2
τ [(xt cosϕ + yt sin ϕ)2 + e−1(−xt sin ϕ + yt cosϕ)2]

}
dS. (1.4)

2. Solution of the Problem. We assume that the axial load and shear force are functions of ϕ, i.e.,
n = n(ϕ) and q = q(ϕ), where ϕ = ϕ(S, τ). In this case, the first two equations in (1.2) become

nϕ − q = f1ϕ
−1
s , n + qϕ = f2ϕ

−1
s . (2.1)

Eliminating the function q from these equations, we obtain the following inhomogeneous linear equation of the
second order for the function n:

nϕϕ + n = f2ϕ
−1
s + (f1ϕ

−1
s )ϕ.

The solution has the form

n = C1 sin ϕ + C2 cosϕ − cosϕ

∫
[f2ϕ

−1
s + (f1ϕ

−1
s )ϕ] sin ϕdϕ + sin ϕ

∫
[f2ϕ

−1
s + (f1ϕ

−1
s )ϕ] cosϕdϕ, (2.2)

where C1 and C2 are constants.
Integrating the integrands by parts, we obtain the equalities

∫
(f1ϕ

−1
s )ϕ sin ϕdϕ = f1ϕ

−1
s sin ϕ −

∫
f1 cosϕdS,

∫
(f1ϕ

−1
s )ϕ cosϕdϕ = f1ϕ

−1
s cosϕ +

∫
f1 sin ϕdS.

In view of these relations, expression (2.2) becomes

n = C1 sin ϕ + C2 cosϕ − cosϕ
( S∫

0

f2 sin ϕdS −
S∫

0

f1 cosϕdS
)

+ sin ϕ
( S∫

0

f2 cosϕdS +

S∫

0

f1 sinϕdS
)
. (2.3)

According to the first equation in (1.2), the shear force is q = ϕ−1
s (ns − f1). Taking into account expres-

sions (2.3), we have

q = C1 cosϕ − C2 sinϕ + sin ϕ
( S∫

0

f2 sin ϕdS −
S∫

0

f1 cosϕdS
)

+ cosϕ
( S∫

0

f2 cosϕdS +

S∫

0

f1 sin ϕdS
)
. (2.4)

The constants in expressions (2.3) and (2.4) are found from the condition of no forces at the left end (S = 0 and
n = q = 0) of the body (1.2). Thus, we obtain the system of equations

C1 sin ϕ0 + C2 cosϕ0 = 0, C1 cosϕ0 − C2 sin ϕ0 = 0,

where ϕ0(τ) = ϕ|S=0. The solution of this system has the form C1 = C2 = 0.
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Taking into account the boundary conditions for the right end (S = 1 and n = q = 0) of the animal’s
body (1.2), we have the system of equations

− cosϕ0

( 1∫

0

f2 sin ϕdS −
1∫

0

f1 cosϕdS
)

+ sin ϕ0

( 1∫

0

f2 cosϕdS +

1∫

0

f1 sinϕdS
)

= 0,

sin ϕ0

( 1∫

0

f2 sinϕdS −
1∫

0

f1 cosϕdS
)

+ cosϕ0

( 1∫

0

f2 cosϕdS +

1∫

0

f1 sin ϕdS
)

= 0.

Here we took into account the property of function (1.3) ϕ0 = ϕ|S=0 = ϕ|S=1. The system of trigonometric
equations has a trivial solution:

1∫

0

(f2 sin ϕ − f1 cosϕ) dS = 0,

1∫

0

(f2 cosϕ + f1 sinϕ) dS = 0. (2.5)

Substituting the expressions for the functions f1 and f2 from (1.2) into (2.5), we write the equations in expanded
form

1∫

0

(√
X2

τ + Y 2
τ

{
Xτ [1 + (e−1 − 1) sin2 ϕ] + 0.5(1 − e−1)Yτ sin 2ϕ

}
− In Xττ

)
dS = 0,

1∫

0

(√
X2

τ + Y 2
τ

{
0.5(e−1 − 1)Xτ sin 2ϕ − Yτ [e−1 + (1 − e−1) sin2 ϕ]

}
+ In Yττ

)
dS = 0.

(2.6)

The geometrical relation for the elastic axis from (1.2) and expression (1.3) leads to the following equations
for the functions X and Y :

XS = cosϕ = 1 − ϕ2/2! + . . . = 1 − (ε2/2) sin2(KS − Ωτ) + . . . ,

YS = sinϕ = ϕ − ϕ3/3! + . . . = ε sin (KS − Ωτ) − (ε3/6) sin3(KS − Ωτ) + . . . .
(2.7)

We will analyze the problem using the small parameter method with the geometrical perturbation amplitude ε

in (1.3) as the small parameter. The functions X and Y are obtained in the form of direct expansions in the powers
of the small parameter. According to expansions (2.7), the required functions can be written as

X = X0 + ε2X2 + . . . , Y = εY1 + ε3Y 3
3 + . . . , |ε| � 1. (2.8)

A detailed analysis of the problem shows that terms with odd powers in ε in X and with even powers in Y are
equal to zero. Retaining the first two terms of the expansion for the function X and one term for Y and integrating
Eqs. (2.7) from 0 to S with allowance for (2.8), we obtain

X0 = S + C3(τ), X2 = − 1
2K

(KS

2
− sin 2(KS − Ωτ)

4
− sin 2Ωτ

4

)
+ C4(τ),

Y1 = −(cos (KS − Ωτ) − cosΩτ)/K + C5(τ),
(2.9)

where C3, C4, and C5 are unknown functions of time.
The function C3 characterizes the motion of the animal along the X axis. However, since the component X0

does not depend on the perturbation amplitude ε, it is necessary to set C3 = 0.
At the initial time, let the left end of the animal’s body be at the cross section X = 0 and the elastic axis

be symmetric about the X axis (the static moment of the elastic axis with respect to the X axis is equal to zero).
Thus, we have the conditions

τ = 0, S = 0: X = 0; (2.10)
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τ = 0:

1∫

0

Y dS = 0. (2.11)

Taking into account relations (2.8) and (2.9) and condition (2.10), we obtain the equality ε2C4|τ=0 + . . . = 0,
which leads to the following initial condition for the unknown function of time:

τ = 0, C4 = 0. (2.12)

Substituting (2.8) and (2.9) into (2.11), for any time we have

ε(K−1 cosΩτ + C5) + . . . = 0.

Here we took into account the equalities K = 2πn (n = 1, 2, 3 . . . ; sinK = 0 and cosK = 1). Thus, the function
C5 has the form

C5 = −K−1 cosΩτ. (2.13)

According to (2.8), (2.9), and (2.13), the function Y we write as

Y = −(ε/K) cos (KS − Ωτ) + O(ε3). (2.14)

To find the function C4(τ), we use Eqs. (2.6). Substitution of the expansions (2.8) into (2.6) (only terms of
the orders considered are taken into account) yields

1∫

0

[(
ε|Y1τ | + ε3

2
X2

2τ

Y1τ

){
ε2X2τ [1 + (e−1 − 1)(εϕ1)2] + (1 − e−1)ε2Y1τϕ1

}
− In ε2X2ττ

]
dS = 0,

1∫

0

[(
ε|Y1τ | + ε3

2
X2

2τ

Y1τ

){
(e−1 − 1)ε3X2τϕ1 − εY1τ [e−1 + (1 − e−1)ε2ϕ2

1]
}

+ In εY1ττ

]
dS = 0.

Here ϕ1 = sin (KS − Ωτ) and we used the relations

sin2 ϕ ≈ ε2ϕ2
1 + . . . , sin 2ϕ ≈ 2εϕ1 + . . . ,

√
(ε2X2τ )2 + (εY1τ )2 ≈ ε|Y1τ | + ε3

2
X2

2τ

Y1τ
+ . . . .

Collecting the coefficients of the same powers of ε, we obtain the equations
1∫

0

Y1ττ dS = 0 for ε1; (2.15)

1∫

0

X2ττ dS = 0,

1∫

0

Y 2
1τ dS = 0 for ε2; (2.16)

1∫

0

[
|Y1τ |X2τ + |Y1τ |(1 − e−1)Y1τϕ1] dS = 0 for ε3. (2.17)

Equation (2.15) and the second equation in (2.16) are identities. From the first equation of (2.16) using (2.9),
we find the function C4:

C4 = − 1
8K

sin 2Ωτ + C40τ + C41 (2.18)

(C40 and C41 are constants). Condition (2.12) implies that C41 = 0. The constant C40 is found using Eq. (2.17).
Integration of this equation with allowance for expressions (2.9), (2.14), and (2.18) yields

C40 = − Ω
12K

8 − 7e

e
.

Taking into account relations (2.8), (2.9), and (2.18), for the function X we rite the expression

X = S
(
1 − ε2

4

)
+

ε2

8K
sin 2(KS − Ωτ) − ε2Ω(8 − 7e)τ

12Ke
+ O(ε4). (2.19)
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After simple transformations, expressions (2.3) and (2.4) become

n = − cosϕ

S∫

0

(√
X2

τ + Y 2
τ

{
Xτ [1 + (e−1 − 1) sin2 ϕ] + 0.5(1 − e−1)Yτ sin 2ϕ

}
− In Xττ

)
dS

+ sin ϕ

S∫

0

(√
X2

τ + Y 2
τ

{
0.5(e−1 − 1)Xτ sin 2ϕ − Yτ [e−1 + (1 − e−1) sin2 ϕ]

}
+ In Yττ

)
dS,

q = sin ϕ

S∫

0

(√
X2

τ + Y 2
τ

{
Xτ [1 + (e−1 − 1) sin2 ϕ] + 0.5(1 − e−1)Yτ sin 2ϕ

}
− In Xττ

)
dS

+ cosϕ

S∫

0

(√
X2

τ + Y 2
τ

{
0.5(e−1 − 1)Xτ sin 2ϕ − Yτ [e−1 + (1 − e−1) sin2 ϕ]

}
+ In Yττ

)
dS.

Substitution of formulas (2.14) and (2.19) into these expressions yields the following asymptotic estimates for the
axial force and the shear force:

n = ε2 Ω2

K2
cos [ε sin (KS − Ωτ)]

[2 − e

3e
J1 +

(1
2
− e−1

)
J3

]
+ ε2 Ω2

eK2
sin [ε sin (KS − Ωτ)]J2

− ε2 Ω2

4K2
In [cos 2(KS − Ωτ) − cos 2Ωτ ] cos [ε sin (KS − Ωτ)]

+ε2 Ω2

eK2
In[sin (KS − Ωτ) − sin Ωτ ] sin [ε sin (KS − Ωτ)] + O(ε4),

q = −ε2 Ω2

K2
sin [ε sin (KS − Ωτ)]

[2 − e

3e
J1 +

(1
2
− e−1

)
J3

]
+ ε2 Ω2

eK2
cos [ε sin (KS − Ωτ)]J2

(2.20)

+ ε2 Ω2

4K2
In[cos 2(KS − Ωτ) − cos 2Ωτ ] sin [ε sin (KS − Ωτ)]

+ ε2 Ω2

eK2
In[sin (KS − Ωτ) − sin Ωτ ] cos [ε sin (KS − Ωτ)] + O(ε4).

Here

J1 =

S∫

0

| sin (KS − Ωτ)| dS =
2

πK

(
KS − 2

∞∑

n=1

1
2n(4n2 − 1)

{sin [2n(KS − Ωτ)] + sin (2nΩτ)}
)
,

J2 =

S∫

0

| sin (KS − Ωτ)| sin (KS − Ωτ) dS

=
1

2K

{
| sin (KS − Ωτ)| cos (KS − Ωτ) − | sin (Ωτ)| cos (Ωτ) + arcsin [cos (KS − Ωτ)] − arcsin [cos (Ωτ)]

}
,

J3 =

S∫

0

| sin (KS − Ωτ)| sin2(KS − Ωτ) dS =
1
2

J1 − 1
2πK

(
− 2

3
KS + sin [2(KS − Ωτ)] + sin (2Ωτ)

−
∞∑

n=1

1
(n + 1)(4n2 − 1)

{sin [2(n + 1)(KS − Ωτ)] + sin [2(n + 1)Ωτ ]}

−
∞∑

n=2

1
(n − 1)(4n2 − 1)

{sin [2(n − 1)(KS − Ωτ)] + sin [2(n − 1)Ωτ ]}
)
.

205



1

_0.5 0.5 1.0
_0.05

0

0

0.05

Y

X

2
3

4

5

6

Fig. 2. Elastic force at times τ = 0 (1), 0.25 (2), 0.5 (3), 0.75 (4), 1 (5), and 1.25 (6).

Using (2.14) and (2.19), we obtain the following asymptotic estimate for the expended power (1.4):

w = ε3 Ω3

eK3

1∫

0

| sin (KS − Ωτ)| sin2(KS − Ωτ) dS + O(ε5).

Integration yields
w = 4Ω3ε3/(3πeK3) + O(ε5).

The computational formula for the energy in dimensional form is written as
W = 2ω3y3

mlξρd/(3π) + O(ε5), (2.21)
where ym = ε/k is the dimensional amplitude of the deflection of the elastic axis of the body from the x axis.

3. Analysis of the Solution. The first term on the right side of expression (2.19) in aggregate with
expression (2.14) describes the elastic axis of the animal’s body, and the second term describes the axial oscillations
of the body during motion. The multiplicand of the third term Ωε2(8 − 7e)/(12Ke) characterizes the average
velocity of motion of the animal along the X axis. The velocity does not depend on the inertia of the body (on
the parameter In). For the law of motion (the function ϕ) specified a priori, the inertia forces influence the axial
load and the shear force. The dimensional velocity v̄x is defined by the expression v̄x = −(8 − 7e)y2

mkω/(12e).
The velocity depends largely on the relation between the friction force component (the parameter e). The result
confirms Lavrent’ev’s idea on the necessity of taking into account the viscous properties of the fluid [9].

Figure 2 gives the configurations of the elastic axis at various times. The calculations were performed using
formulas (2.14) and (2.19) for ε = 0.3, Ω = 2π, K = 4π, and e = 0.1. The animal moves to the left (Ω > 0 and
K > 0) along the X-axis. On each line of the elastic axis, the arrow shows the head of the animal.

The results of the numerical analysis of Eqs. (2.14), (2.19) suggest that to ensure the proper direction of
the motion, the condition e < 8/7 should be satisfied. The parameter e characterizes the relation between the
longitudinal and transverse friction forces and is defined by the formula e = 0.65π Re−0.7

l . The Reynolds number
should satisfy the condition Re0.7

l > 0.568π.
As the longitudinal friction (the parameter e) decreases, the velocity increases; therefore, the velocity is

greatly affected by the hydrodynamic boundary layer.
The axial velocity of an animal moving without friction in a glass tube of shape given by Y = −(ε/K) cosKS

and X = S(1 − ε2/4) will have the maximum possible value equal to the traveling wave velocity Ω/K. The real
velocity is lower. The parameters ε and e should satisfy the ultimate velocity condition ε2(8 − 7e)/(12e) � 1.

Expressions (2.20) imply that the axial force and the shear force are cyclic in nature and proportional to the
complex ε2Ω2/K2. The component due to the inertia forces is proportional to In ε2Ω2/K2.

For turbulent motion, the expended power (2.21) differs significantly from the power for laminar motion [4].
As a first approximation, the inertia forces do not influence the expended power. The frequency of muscle contrac-
tion ω can be expressed in terms of the average velocity of motion: ω = |−12ev̄x/[(8 − 7e)y2

mk]|.
The governing equation (1.3) does not always fit the real motion pattern. For example, during motion water

snakes keep the axial orientation of the head. In addition, the span of the lateral vibrations increases from head
to tail. In this case, it is possible to use the governing equation ϕ = ε[exp (aS) − 1] sin(KS − Ωτ), where a is a
constant.
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